Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Int J Mol Sci ; 23(24)2022 Dec 08.
Article in English | MEDLINE | ID: covidwho-2295447

ABSTRACT

Heme is of great significance in food nutrition and food coloring, and the successful launch of artificial meat has greatly improved the application of heme in meat products. The precursor of heme, 5-aminolevulinic acid (ALA), has a wide range of applications in the agricultural and medical fields, including in the treatment of corona virus disease 2019 (COVID-19). In this study, E. coli recombinants capable of heme production were developed by metabolic engineering and membrane engineering. Firstly, by optimizing the key genes of the heme synthesis pathway and the screening of hosts and plasmids, the recombinant strain EJM-pCD-AL produced 4.34 ± 0.02 mg/L heme. Then, the transport genes of heme precursors CysG, hemX and CyoE were knocked out, and the extracellular transport pathways of heme Dpp and Ccm were strengthened, obtaining the strain EJM-ΔCyoE-pCD-AL that produced 9.43 ± 0.03 mg/L heme. Finally, fed-batch fermentation was performed in a 3-L fermenter and reached 28.20 ± 0.77 mg/L heme and 303 ± 1.21 mg/L ALA. This study indicates that E. coli recombinant strains show a promising future in the field of heme and ALA production.


Subject(s)
COVID-19 , Escherichia coli Proteins , Humans , Escherichia coli/genetics , Escherichia coli/metabolism , Heme/metabolism , Aminolevulinic Acid/metabolism , Escherichia coli Proteins/metabolism , Metabolic Engineering , Fermentation
2.
Environ Res ; 215(Pt 1): 114323, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2031272

ABSTRACT

Dependency on plastic commodities has led to a recurrent increase in their global production every year. Conventionally, plastic products are derived from fossil fuels, leading to severe environmental concerns. The recent coronavirus disease 2019 pandemic has triggered an increase in medical waste. Conversely, it has disrupted the supply chain of personal protective equipment (PPE). Valorisation of food waste was performed to cultivate C. necator for fermentative production of biopolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). The increase in biomass, PHBV yield and molar 3-hydroxy valerate (3HV) content was estimated after feeding volatile fatty acids. The fed-batch fermentation strategy reported in this study produced 15.65 ± 0.14 g/L of biomass with 5.32 g/L of PHBV with 50% molar 3HV content. This is a crucial finding, as molar concentration of 3HV can be modulated to suit the specification of biopolymer (film or fabric). The strategy applied in this study addresses the issue of global food waste burden and subsequently generates biopolymer PHBV, turning waste to wealth.


Subject(s)
COVID-19 , Cupriavidus necator , Medical Waste , Refuse Disposal , Biopolymers , Cupriavidus necator/metabolism , Fermentation , Food , Fossil Fuels , Humans , Hydroxybutyrates , Pentanoic Acids , Plastics , Polyesters , Valerates
3.
ACS Appl Mater Interfaces ; 14(36): 40569-40578, 2022 Sep 14.
Article in English | MEDLINE | ID: covidwho-2008242

ABSTRACT

Sucrose is one of the most applied carbon sources in the fermentation process, and it directly determines the microbial metabolism with its concentration fluctuation. Meanwhile, sucrose also plays a key role of a protective agent in the production of biological vaccines, especially in the new mRNA vaccines for curing COVID-19. However, rapid and precise detection of sucrose is always desired but unrealized in industrial fermentation and synthetic biology research. In order to address the above issue, we proposed an ultrasensitive biosensor microchip achieving accurate sucrose recognition within only 12 s, relying on the construction of a Prussian blue analogue@Au edge-rich (PBA@AuER) microarchitecture. This special geometric structure was formed through exactly inducing the oriented PBA crystallization toward a certain plane to create more regular and continuous edge features. This composite was further transformed to a screen-printed ink to directly and large-scale fabricate an enzymatic biosensor microchip showing ultrahigh sensitivity, a wide detection range, and a low detection limit to the accurate sucrose recognition. As confirmed in a real alcohol fermentation reaction, the as-prepared microchip enabled us to accurately detect the sucrose and glucose concentrations with outstanding reusability (more than 300 times) during the whole process through proposing a novel analytical strategy for the binary mixture substrate system.


Subject(s)
Biosensing Techniques , COVID-19 , Electrodes , Fermentation , Ferrocyanides , Humans , Printing, Three-Dimensional , Sucrose
4.
BMC Vet Res ; 18(1): 138, 2022 Apr 12.
Article in English | MEDLINE | ID: covidwho-1817222

ABSTRACT

BACKGROUND: This study aimed to evaluate whether different methods of providing eubiotic feed additives to neonatal calves, during the preweaning period, can improve the calves' health, performance, ruminal fermentation, and metabolic status. Forty-four (3-day-old) Holstein-Friesian dairy calves (22 female and 22 male) were divided into four treatment groups for the duration of the 8-week trial. The eubiotic feed additive consisted of a combination of probiotic Lactobacillus spp. (multiple-strains at a dose of 250 mg/calf/day) and phytobiotics containing rosmarinic acid, as the main bioactive compound (at a dose of 50 mg/calf/day). The groups were named: CON (control, without eubiotic in either the milk replacer or the starter feed), MR (eubiotic in the milk replacer), SF (eubiotic in the starter feed), MRS (eubiotic in both the milk replacer and the starter feed). The individual intake of starter feed and the fecal scores were measured daily, and body weight and biometric measurements were taken weekly until calves were 56 days of age. Blood samples were collected on day 3 and then every 14 days to determine concentrations of insulin-like-growth-factor-I, ß-hydroxybutyrate, non-esterified fatty acids, and blood urea nitrogen. Ruminal fluid was collected on days 28 and 56 for short-chain fatty acids, NH3-N, and pH measurements. RESULTS: The body weight of the calves of the MR treatment group was higher compared to all other groups on days 28 and 56. Including the eubiotic feed additive in the milk replacer increased average daily gain, starter intake, and total dry matter intake from day 29 to day 56 and the overall experimental period compared to the CON group. The calves with MR treatment had lower fecal scores from days 3 to 28, a number of parasite oocysts/cysts per gram of feces on day 28, and the occurrences of fecal consistency scores of 3 (mild diarrhea) and 4 (severe diarrhea) were 3.2 and 3.0 times lower, respectively, compared with the CON group. The MR group had higher ruminal concentrations of short-chain-fatty-acids, propionate, and butyrate on day 56 than the CON group. Adding eubiotics into milk replacer resulted in the highest concentrations of blood insulin-like-growth-factor-I and ß-hydroxybutyrate from days 29 to 56 and the overall experimental period. CONCLUSION: The addition of eubiotic feed additives into the milk replacer can improve health, performance, ruminal fermentation, and biochemical blood indices in dairy calves during the preweaning period.


Subject(s)
Animal Feed , Rumen , 3-Hydroxybutyric Acid , Animal Feed/analysis , Animals , Body Weight , Cattle , Diarrhea/veterinary , Diet/veterinary , Fatty Acids, Volatile/metabolism , Female , Fermentation , Insulin/metabolism , Male , Milk/metabolism , Rumen/metabolism , Weaning
5.
Biomolecules ; 12(4)2022 04 18.
Article in English | MEDLINE | ID: covidwho-1809688

ABSTRACT

Louis Pasteur is the most internationally known French scientist. He discovered molecular chirality, and he contributed to the understanding of the process of fermentation, helping brewers and winemakers to improve their beverages. He proposed a process, known as pasteurization, for the sterilization of wines. He established the germ theory of infectious diseases that allowed Joseph Lister to develop his antiseptic practice in surgery. He solved the problem of silkworm disease, although he had refuted the idea of Antoine Béchamp, who first considered it was a microbial infection. He created four vaccines (fowl cholera, anthrax, pig erysipelas, and rabies) in the paths of his precursors, Henri Toussaint (anthrax vaccine) and Pierre Victor Galtier (rabies vaccine). He generalized the word "vaccination" coined by Richard Dunning, Edward Jenner's friend. Robert Koch, his most famous opponent, pointed out the great ambiguity of Pasteur's approach to preparing his vaccines. Analysis of his laboratory notebooks has allowed historians to discern the differences between the legend built by his hagiographers and reality. In this review, we revisit his career, his undeniable achievements, and tell the truth about a hero who made every effort to build his own fame.


Subject(s)
Vaccines , Wine , Animals , Fermentation , Swine , Vaccination
6.
PLoS One ; 16(12): e0261333, 2021.
Article in English | MEDLINE | ID: covidwho-1779728

ABSTRACT

Allergic airway disease is the most common chronic airway inflammatory disorder in developed countries. House dust mite, cockroach, and mold are the leading allergens in most tropical and subtropical countries, including Taiwan. As allergen avoidance is difficult for patients allergic to these perennial indoor allergens, allergen-specific immunotherapy (ASIT) is the only available allergen-specific and disease-modifying treatment. However, for patients sensitized to multiple allergens, ASIT using each corresponding allergen is cumbersome. In the present study, we developed a recombinant L. lactis vaccine against the three most common indoor aeroallergens and investigated its effectiveness for preventing respiratory allergy and safety in mice. Three recombinant clones of Der p 2 (mite), Per a 2 (roach), and Cla c 14 (mold) were constructed individually in pNZ8149 vector and then electroporated into host strain L.lactis NZ3900. BALB/c mice were fed with the triple vaccine 5 times per week for 4 weeks prior to sensitization. The effectiveness and safety profile were then determined. Oral administration of the triple vaccine significantly alleviated allergen-induced airway hyper-responsiveness in the vaccinated mice. The allergen-specific IgG2a was upregulated. IL-4 and IL-13 mRNA expressions as well as inflammatory cell infiltration in the lungs decreased significantly in the vaccinated groups. No body weight loss or abnormal findings in the liver and kidneys were found in any of the groups of mice. This is the first report to describe a triple-aeroallergen vaccine using a food-grade lactococcal expression system. We developed a convenient oral delivery system and intend to extend this research to develop a vaccination that can be self-administered at home by patients.


Subject(s)
Allergens/chemistry , Asthma/immunology , Desensitization, Immunologic/methods , Hypersensitivity/metabolism , Lactococcus lactis , Vaccines , Animals , Antigens, Dermatophagoides/chemistry , Antigens, Dermatophagoides/immunology , Arthropod Proteins/chemistry , Electroporation , Female , Fermentation , Insect Proteins , Mice , Mice, Inbred BALB C , Pyroglyphidae/immunology , Respiratory Hypersensitivity/prevention & control
7.
Vopr Pitan ; 91(1): 86-97, 2022.
Article in Russian | MEDLINE | ID: covidwho-1744381

ABSTRACT

The problem of increasing the population antiviral immunity is of particular importance during the third year of the SARS-CoV-2 pandemic. Concomitant intestinal dysbiosis is known to play an significant role in immune cell dysfunction. Therefore, it is very important to take measures to maintain the gut microbiota using the most affordable nutritional remedies, which include fermented milk and probiotic products designed for mass population consumption and capable of enhancing their immune defence when added to the daily diet. The aim of the study was to analyze scientific evidence highlighting the role of intestinal microbiota in maintaining the macro-organism immunological balance, and to evaluate modern fermented milk and probiotic products in terms of their effect on normalising the gut microbiota and their importance in the prevention and treatment of SARS-CoV-2. Material and methods. The presented scientific and analytical review analyzed the data of electronic resources of the Global Health platform, scientific libraries eLIBRARY.RU, Cochrane Library and CyberLeninka, the search system Google Academy¼, specialized sites for scientific publications ScienceDirect and Elsevier, bibliographic databases of articles on medical sciences MEDLINE, CDC infection diseases, Embase and PubMed- NCBI. The structural-logical, analytical and axiomatic methods were used. Results. It has been shown that normal intestinal microbiota takes part in maintaining metabolism in the digestive tract, increases the body's immune reactivity and regulates the functioning of all organs and systems. The severity of dysbiotic disorders can determine susceptibility to SARS-CoV-2, the severity of this infection course, as well as the level of post-infection and post-vaccination anti-COVID-19 immunity. The high prevalence of gut dysbacteriosis indicates the need to strengthen measures of correcting dysbiotic disorders, including the inclusion of fermented and probiotic products in the daily population diet. Conclusion. Fermented milk and probiotic products, as sources of easily digestible macronutrients, essential micronutrients, biologically active substances and beneficial live microorganisms, should be included in the daily diet during the SARS-CoV-2 pandemic to increase the adaptive capacity and immunity of the population.


Subject(s)
COVID-19 , Diet , Gastrointestinal Microbiome , Milk , Probiotics , Animals , COVID-19/immunology , COVID-19/prevention & control , Fermentation , Gastrointestinal Microbiome/immunology , Humans , Milk/microbiology , Pandemics , Probiotics/administration & dosage , SARS-CoV-2
8.
Front Immunol ; 12: 765528, 2021.
Article in English | MEDLINE | ID: covidwho-1555219

ABSTRACT

Influenza vaccination is an effective public health measure to reduce the risk of influenza illness, particularly when the vaccine is well matched to circulating strains. Notwithstanding, the efficacy of influenza vaccination varies greatly among vaccinees due to largely unknown immunological determinants, thereby dampening population-wide protection. Here, we report that dietary fibre may play a significant role in humoral vaccine responses. We found dietary fibre intake and the abundance of fibre-fermenting intestinal bacteria to be positively correlated with humoral influenza vaccine-specific immune responses in human vaccinees, albeit without reaching statistical significance. Importantly, this correlation was largely driven by first-time vaccinees; prior influenza vaccination negatively correlated with vaccine immunogenicity. In support of these observations, dietary fibre consumption significantly enhanced humoral influenza vaccine responses in mice, where the effect was mechanistically linked to short-chain fatty acids, the bacterial fermentation product of dietary fibre. Overall, these findings may bear significant importance for emerging infectious agents, such as COVID-19, and associated de novo vaccinations.


Subject(s)
Dietary Fiber/pharmacology , Immunity, Humoral/drug effects , Influenza Vaccines/immunology , Influenza, Human/immunology , Adolescent , Adult , Animals , Dietary Fiber/metabolism , Fatty Acids, Volatile/metabolism , Fatty Acids, Volatile/pharmacology , Female , Fermentation , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/immunology , Humans , Immunogenicity, Vaccine , Influenza, Human/microbiology , Influenza, Human/prevention & control , Male , Mice , Middle Aged , Orthomyxoviridae/immunology , Seasons , Vaccination , Young Adult
9.
Sensors (Basel) ; 21(22)2021 Nov 17.
Article in English | MEDLINE | ID: covidwho-1538465

ABSTRACT

The problems that the key biomass variables in Pichia pastoris fermentation process are difficult measure in real time; this paper mainly proposes a multi-model soft sensor modeling method based on the piecewise affine (PWA) modeling method, which is optimized by particle swarm optimization (PSO) with an improved compression factor (ICF). Firstly, the false nearest neighbor method was used to determine the order of the PWA model. Secondly, the ICF-PSO algorithm was proposed to cooperatively optimize the number of PWA models and the parameters of each local model. Finally, a least squares support vector machine was adopted to determine the scope of action of each local model. Simulation results show that the proposed ICF-PSO-PWA multi-model soft sensor modeling method accurately approximated the nonlinear features of Pichia pastoris fermentation, and the model prediction accuracy is improved by 4.4884% compared with the weighted least squares vector regression model optimized by PSO.


Subject(s)
Algorithms , Support Vector Machine , Fermentation , Least-Squares Analysis , Saccharomycetales
10.
Z Naturforsch C J Biosci ; 77(1-2): 71-84, 2022 Jan 27.
Article in English | MEDLINE | ID: covidwho-1470681

ABSTRACT

Probiotics are living organisms that have beneficial effects on host by regulating the microbial balance of the intestinal system. While probiotics are naturally found in yogurt and other fermented foods, they can also be added to many products. Although mostly in dairy products, it is possible to see examples of food products supplemented by probiotics in bakeries, chocolates and confectioneries. Nowadays, the COVID-19 pandemic that the world suffers increased the demand for such functional food products including probiotics. Due to probiotics having potential effects on strengthening the immune system, confectioneries supplemented by probiotics were comprehensively discussed in this review together with the suggestion of a novel gelly composition. The suggested formulation of the product is a gel-like snack contains natural ingredients such as carrot, lemon juice and sugar provided from apples. This research review article provided a guide together with the recommendations for potential probiotic research in candy and confectionery industry.


Subject(s)
COVID-19 , Probiotics , Candy , Fermentation , Humans , Pandemics , SARS-CoV-2
11.
Front Immunol ; 12: 673692, 2021.
Article in English | MEDLINE | ID: covidwho-1325525

ABSTRACT

In a perspective entitled 'From plant survival under severe stress to anti-viral human defense' we raised and justified the hypothesis that transcript level profiles of justified target genes established from in vitro somatic embryogenesis (SE) induction in plants as a reference compared to virus-induced profiles can identify differential virus signatures that link to harmful reprogramming. A standard profile of selected genes named 'ReprogVirus' was proposed for in vitro-scanning of early virus-induced reprogramming in critical primary infected cells/tissues as target trait. For data collection, the 'ReprogVirus platform' was initiated. This initiative aims to identify in a common effort across scientific boundaries critical virus footprints from diverse virus origins and variants as a basis for anti-viral strategy design. This approach is open for validation and extension. In the present study, we initiated validation by experimental transcriptome data available in public domain combined with advancing plant wet lab research. We compared plant-adapted transcriptomes according to 'RegroVirus' complemented by alternative oxidase (AOX) genes during de novo programming under SE-inducing conditions with in vitro corona virus-induced transcriptome profiles. This approach enabled identifying a major complex trait for early de novo programming during SARS-CoV-2 infection, called 'CoV-MAC-TED'. It consists of unbalanced ROS/RNS levels, which are connected to increased aerobic fermentation that links to alpha-tubulin-based cell restructuration and progression of cell cycle. We conclude that anti-viral/anti-SARS-CoV-2 strategies need to rigorously target 'CoV-MAC-TED' in primary infected nose and mouth cells through prophylactic and very early therapeutic strategies. We also discuss potential strategies in the view of the beneficial role of AOX for resilient behavior in plants. Furthermore, following the general observation that ROS/RNS equilibration/redox homeostasis is of utmost importance at the very beginning of viral infection, we highlight that 'de-stressing' disease and social handling should be seen as essential part of anti-viral/anti-SARS-CoV-2 strategies.


Subject(s)
Cellular Reprogramming/genetics , Multifactorial Inheritance/genetics , SARS-CoV-2/pathogenicity , Acetylserotonin O-Methyltransferase/genetics , Arabidopsis/genetics , Arabidopsis/growth & development , Cell Cycle/genetics , Databases, Genetic , Daucus carota/genetics , Daucus carota/growth & development , Fermentation , Gene Expression Profiling , Humans , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism , Tubulin/genetics , Viruses/pathogenicity
12.
J Nutr Biochem ; 98: 108821, 2021 12.
Article in English | MEDLINE | ID: covidwho-1309296

ABSTRACT

Membrane glycoprotein is the most abundant protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but its role in coronavirus disease 2019 (COVID-19) has not been fully characterized. Mice intranasally inoculated with membrane glycoprotein substantially increased the interleukin (IL)-6, a hallmark of the cytokine storm, in bronchoalveolar lavage fluid (BALF), compared to mice inoculated with green fluorescent protein (GFP). The high level of IL-6 induced by membrane glycoprotein was significantly diminished in phosphodiesterase 4 (PDE4B) knockout mice, demonstrating the essential role of PDE4B in IL-6 signaling. Mycelium fermentation of Lactobacillus rhamnosus (L. rhamnosus) EH8 strain yielded butyric acid, which can down-regulate the PDE4B expression and IL-6 secretion in macrophages. Feeding mice with mycelia increased the relative abundance of commensal L. rhamnosus. Two-week supplementation of mice with L. rhamnosus plus mycelia considerably decreased membrane glycoprotein-induced PDE4B expression and IL-6 secretion. The probiotic activity of L. rhamnosus plus mycelia against membrane glycoprotein was abolished in mice treated with GLPG-0974, an antagonist of free fatty acid receptor 2 (Ffar2). Activation of Ffar2 in the gut-lung axis for down-regulation of the PDE4B-IL-6 signalling may provide targets for development of modalities including probiotics for treatment of the cytokine storm in COVID-19.


Subject(s)
Coronavirus M Proteins/pharmacology , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Interleukin-6/metabolism , Lacticaseibacillus rhamnosus/physiology , Probiotics/pharmacology , SARS-CoV-2/metabolism , Animals , Butyric Acid , Cell Line , Cloning, Molecular , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Female , Fermentation , Gene Expression Regulation/drug effects , Humans , Interleukin-6/genetics , Mice , Mice, Inbred ICR , Receptors, G-Protein-Coupled/metabolism
13.
PLoS One ; 16(1): e0244885, 2021.
Article in English | MEDLINE | ID: covidwho-1251754

ABSTRACT

Human influenza virus infections occur annually worldwide and are associated with high morbidity and mortality. Hence, development of novel anti-influenza drugs is urgently required. Rice Power® extract developed by the Yushin Brewer Co. Ltd. is a novel aqueous extract of rice obtained via saccharization and fermentation with various microorganisms, such as Aspergillus oryzae, yeast [such as Saccharomyces cerevisiae], and lactic acid bacteria, possessing various biological and pharmacological properties. In our previous experimental screening with thirty types of Rice Power® extracts, we observed that the 30th Rice Power® (Y30) extract promoted the survival of influenza A virus-infected Madin-Darby canine kidney (MDCK) cells. Therefore, to identify compounds for the development of novel anti-influenza drugs, we aimed to investigate whether the Y30 extract exhibits anti-influenza A virus activity. In the present study, we demonstrated that the Y30 extract strongly promoted the survival of influenza A H1N1 Puerto Rico 8/34 (A/PR/8/34), California 7/09, or H3N2 Aichi 2/68 (A/Aichi/2/68) viruses-infected MDCK cells and inhibited A/PR/8/34 or A/Aichi/2/68 viruses infection and growth in the co-treatment and pre-infection experiments. The pre-treatment of Y30 extract on MDCK cells did not induce anti-influenza activity in the cell. The Y30 extract did not significantly affect influenza A virus hemagglutination, and neuraminidase and RNA-dependent RNA polymerase activities. Interestingly, the electron microscopy experiment revealed that the Y30 extract disrupts the integrity of influenza A virus particles by permeabilizing the viral membrane envelope, suggesting that Y30 extract has a direct virucidal effect against influenza A virus. Furthermore, we observed that compared to the ethyl acetate (EtOAc) extract, the water extract of Y30 extract considerably promoted the survival of cells infected with A/PR/8/34 virus. These results indicated that more anti-influenza components were present in the water extract of Y30 extract than in the EtOAc extract. Our results highlight the potential of a rice extract fermented with A. oryzae and S. cerevisiae as an anti-influenza medicine and a drug source for the development of anti-influenza compounds.


Subject(s)
Aspergillus oryzae/metabolism , Influenza A virus/drug effects , Oryza/chemistry , Oryza/microbiology , Plant Extracts/pharmacology , Saccharomyces cerevisiae/metabolism , Water/chemistry , Acetates/chemistry , Animals , Antiviral Agents/pharmacology , Dogs , Fermentation , Influenza A virus/growth & development , Influenza A virus/physiology , Madin Darby Canine Kidney Cells , Microbial Viability/drug effects
14.
Environ Res ; 201: 111488, 2021 10.
Article in English | MEDLINE | ID: covidwho-1275304

ABSTRACT

Waste activated sludge (WAS) and animal manure are two significant reservoirs of glucocorticoids (GCs) in the environment. However, GC degradation during anaerobic digestion (AD) of WAS or animal manure has rarely been investigated. In this study, co-fermentation of WAS and animal manure was conducted to investigate the performance of AD in controlling GC dissemination. Effects of manure type on GC degradation and sludge acidification were investigated. The results showed that co-fermentation of WAS and chicken manure (CM) significantly enhanced the degradation of hydrocortisone (HC) to 99%, betamethasone (BT) to 99%, fluocinolone acetonide (FA) to 98%, and clobetasol propionate (CP) to 82% in 5 days with a mixing ratio of 1:1 (g TS sludge/g dw manure) at 55 °C and initial pH of 7. Simultaneously, sludge reduction was increased by 30% and value-added volatile fatty acid (VFA) production was improved by 40%. Even a high GC content of biomass (3.6 mg/g TS) did not impact both sludge hydrolysis and acidification. The amendment of WAS with CM increased soluble organic carbon, Ca2+, and relative abundance of anaerobes (Eubacterium) associated with organic compound degradation. Furthermore, 44 transformation products of HC, BT, FA, and CP with lower lipophilicity and toxicity were identified, indicating possible degradation pathways including hydroxylation, ketonization, ring cleavage, defluorination, hydrogenation, methylation, and de-esterification. Overall, this study provides a practical way to control GC pollution and simultaneously promote waste reduction and VFA production. Animal manure type as an overlooked factor for influencing co-fermentation performance and pollutant degradation was also highlighted.


Subject(s)
COVID-19 , Sewage , Anaerobiosis , Animals , Bioreactors , Fatty Acids, Volatile , Fermentation , Glucocorticoids , Humans , Hydrogen-Ion Concentration , Manure , SARS-CoV-2
15.
Molecules ; 26(9)2021 Apr 28.
Article in English | MEDLINE | ID: covidwho-1238920

ABSTRACT

Methanol is a natural ingredient with major occurrence in fruit spirits, such as apple, pear, plum or cherry spirits, but also in spirits made from coffee pulp. The compound is formed during fermentation and the following mash storage by enzymatic hydrolysis of naturally present pectins. Methanol is toxic above certain threshold levels and legal limits have been set in most jurisdictions. Therefore, the methanol content needs to be mitigated and its level must be controlled. This article will review the several factors that influence the methanol content including the pH value of the mash, the addition of various yeast and enzyme preparations, fermentation temperature, mash storage, and most importantly the raw material quality and hygiene. From all these mitigation possibilities, lowering the pH value and the use of cultured yeasts when mashing fruit substances is already common as best practice today. Also a controlled yeast fermentation at acidic pH facilitates not only reduced methanol formation, but ultimately also leads to quality benefits of the distillate. Special care has to be observed in the case of spirits made from coffee by-products which are prone to spoilage with very high methanol contents reported in past studies.


Subject(s)
Alcoholic Beverages/analysis , Alcoholic Beverages/standards , Fruit/chemistry , Methanol/chemistry , Fermentation , Food Quality , Hydrogen-Ion Concentration , Kinetics
16.
Biotechnol Appl Biochem ; 69(2): 469-478, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1083974

ABSTRACT

Para-hydroxybenzoic acid (PHBA) has great potential in biological applications due to its putative antiviral activity against SARS-CoV-2 and its antimicrobial activity in the face of the radically increasing number of multidrug-resistant pathogens. This is in addition to its antimutagenic, anti-inflammatory, antioxidant, hypoglycemic, antiestrogenic, and antiplatelet aggregating activities. In this study, an approximate sixfold increase in the production of PHBA was achieved via biotransformation of caffeic acid by Candida albicans. The improvement was performed in two steps: first, through mutation by gamma irradiation (5 KGy dose), resulting in the recovery of a mutant (CI-24), which produced approximately triple the amount of PHBA produced by the wild-type isolate. Then, biotransformation by this mutant was further optimized via response surface methodology model-based optimization. The maximum PHBA production (7.47 mg/mL) was obtained in a fermentation medium composed of 1% w/v yeast extract as a nitrogen source, with an initial pH of 6.6, incubated at 28 °C at an agitation rate of 250 rpm. To further enhance the performance and economics of the process, cells of the CI-24 mutant were immobilized in calcium alginate beads and could retain an equivalent biotransformation capacity after three successive biotransformation cycles.


Subject(s)
COVID-19 , Candida albicans , Biotransformation , Caffeic Acids , Fermentation , Parabens , SARS-CoV-2
17.
Compr Rev Food Sci Food Saf ; 19(6): 4008-4030, 2020 11.
Article in English | MEDLINE | ID: covidwho-803675

ABSTRACT

According to recent reports, the global market for melatonin is worth 700 million USD in 2018 and would reach 2,790 million USD by 2025, growing at a CAGR of 18.9% during 2019 to 2025. Having regard to the prevalence of sleep and circadian rhythm disorders and a clear tendency to increase the demand for melatonin, and the current lack of alternative green and cost-efficient technologies of its synthesis, the supply of this remedy will not be enough to guarantee melatonin supply and affordability on a global scale. The emergence of naturally occurring melatonin and its isomers in fermented foods has opened an exciting new research area; there are still, however, some obscure points in the efficient microbiological biosynthesis of melatonin. This review summarizes the research progress and recent evidence related to melatonin and its isomers in various foodstuffs. Additionally, one possible way to synthesize melatonin is also discussed. The evidence pointed out that the presence of melatonin and its isomers is not exclusive for grapes and grape-derived products, because it can be also found in sweet and sour cherries. However, different species of both Saccharomyces and non-Saccharomyces yeasts could be used to obtain melatonin and melatonin isomers in the process of alcoholic fermentation biotechnologically. The availability of L-tryptophan has been a key factor in determining the concentration of indolic compounds produced, and the utilization of probiotic lactic acid bacteria could help in the formation of melatonin isomers during malolactic fermentation. These approaches are environmentally friendly alternatives with a safer profile than conventional ones and could represent the future for sustainable industrial-scale melatonin production.


Subject(s)
Fermented Foods/analysis , Fruit/chemistry , Melatonin/biosynthesis , Fermentation , Lactobacillales/metabolism , Melatonin/chemistry , Melatonin/pharmacology , Tryptophan , Yeasts/metabolism
18.
Int Arch Allergy Immunol ; 182(6): 489-495, 2021.
Article in English | MEDLINE | ID: covidwho-992130

ABSTRACT

There are large country variations in COVID-19 death rates that may be partly explained by diet. Many countries with low COVID-19 death rates have a common feature of eating large quantities of fermented vegetables such as cabbage and, in some continents, various spices. Fermented vegetables and spices are agonists of the antioxidant transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and spices are transient receptor potential ankyrin 1 and vanillin 1 (TRPA1/V1) agonists. These mechanisms may explain many COVID-19 symptoms and severity. It appears that there is a synergy between Nrf2 and TRPA1/V1 foods that may explain the role of diet in COVID-19. One of the mechanisms of COVID-19 appears to be an oxygen species (ROS)-mediated process in synergy with TRP channels, modulated by Nrf2 pathways. Spicy foods are likely to desensitize TRP channels and act in synergy with exogenous antioxidants that activate the Nrf2 pathway.


Subject(s)
COVID-19/physiopathology , Diet , NF-E2-Related Factor 2/metabolism , SARS-CoV-2/physiology , Spices , TRPA1 Cation Channel/metabolism , Antioxidants , Disease Resistance , Fermentation , Humans , Reactive Oxygen Species/metabolism , Signal Transduction , Vegetables
19.
Bioresour Technol ; 320(Pt A): 124222, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-893620

ABSTRACT

Surfactants are multipurpose products found in most sectors of contemporary industry. Their large-scale manufacturing has been mainly carried out using traditional chemical processes. Some of the chemical species involved in their production are considered hazardous and some industrial processes employing them categorised as "having potential negative impact on the environment". Biological surfactants have therefore been generally accepted worldwide as suitable sustainable greener alternatives. Biosurfactants exhibit the same functionalities of synthetic analogues while having the ability to synergize with other molecules improving performances; this strengthens the possibility of reaching different markets via innovative formulations. Recently, their use was suggested to help combat Covid-19. In this review, an analysis of recent bibliography is presented with descriptions, statistics, classifications, applications, advantages, and challenges; evincing the reasons why biosurfactants can be considered as the chemical specialities of the future. Finally, the uses of the solid-state fermentation as a production technology for biosurfactants is presented.


Subject(s)
COVID-19 , Family Characteristics , Fermentation , Humans , Pandemics , SARS-CoV-2 , Surface-Active Agents , Technology
20.
Allergy ; 76(3): 735-750, 2021 03.
Article in English | MEDLINE | ID: covidwho-697163

ABSTRACT

Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT1 R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT1 R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.


Subject(s)
Brassica , COVID-19/mortality , Fermentation , SARS-CoV-2 , Vegetables , Angiotensin-Converting Enzyme 2/physiology , Antioxidants/pharmacology , COVID-19/epidemiology , Diet , Ecology , Gastrointestinal Microbiome , Humans , Lactobacillales/physiology , NF-E2-Related Factor 2/physiology
SELECTION OF CITATIONS
SEARCH DETAIL